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Abstract. In calculus courses, students learn the properties of continuous and differentiable functions. One

extremely important fact about differentiable functions is that they are continuous. Students are also taught
that the converse is not true, which can be surprising. Even more surprising is the fact that a function can

be continuous everywhere, but differentiable nowhere. We explore the properties of these types of functions;
specifically, we introduce the notion of an everywhere continuous, nowhere differentiable function, using the

famed Weierstrass function as the prime example. We then examine the Weierstrass function in more detail.

1. Introduction

Students of elementary differential calculus are taught a very important fact about functions of one-
real variable early in their studies: If a function is differentiable, then it is continuous. The converse is not
necessarily true, i.e. functions can be continuous but not differentiable. Differentiable functions are the main
object of study in a normal differential calculus course. Formally, a real-valued function f is differentiable
at a point x ∈ (a, b) ⊆ R if

f ′(x) = lim
t→x

f(x)− f(t)

x− t
exists. The function f ′(x) is called the derivative of f at x [1]. Another way the derivative is explained is that
it is the slope of a curve at a given point. A real-valued function f is continuous at a point c ∈ [a, b] ⊆ R
if for every ε > 0 there exists a δ > 0 such that |f(x) − f(c)| < ε for all points x ∈ [a, b] for which
|x− c| < δ [1]. Continuous functions can be intuited as functions which have no holes or breaks where they
are defined. Normally, the functions presented in calculus courses will be rather nice, i.e. having continuity
and differentiability properties that are easy to identify. The differentiability and continuity of a function
are intimately related by the following theorem discussed in calculus courses.

Theorem 1 ([1]). If a function f is differentiable at a point c ∈ R, then f is continuous at c.

The notion in Theorem 1 can be extended to an interval [a, b] over the set of real numbers R. A function f is
called continuous over [a, b] if f is continuous at every point in [a, b]. Similarly, if a function f is differentiable
over [a, b], then f is continuous over [a, b]. At some point in the 19th century, mathematicians wondered if
the converse to the previous statement was true, i.e. if a function is continuous, is it differentiable? This is
not the case, as evidenced by the function f(x) = |x| and its derivative, which are shown below.

Figure 1.1: The absolute value function over [−2, 2].
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Figure 1.2: The derivative of the absolute value function over [−2, 2].

These mathematicians asked if everywhere continuous functions (i.e. continuous everywhere on the real
line) could be nowhere differentiable (i.e. differentiable nowhere on the real line). This happens to be the
case, and in 1872, Karl Weierstrass presented his famed Weierstrass function to the Royal Academy of Science
in Berlin, Germany. The graph to this function is shown in Figure 1.3.

Figure 1.3: The Weierstrass function over [−2, 2] [5].

The Weierstrass function, as it is presented in Figure 1.3, is defined by the following theorem.

Theorem 2 ([3]). Consider the following function:

f(x) =

∞∑
n=0

an cos(bnπx),

for 0 < a < 1 and b a positive odd integer greater than 1 such that ab > 1 + 3
2π. This function is everywhere

continuous but nowhere differentiable.

The proof that this function is truly everywhere continuous and nowhere differentiable uses few notions
from higher mathematics courses, so undergraduates should not have trouble understanding the content pre-
sented. The proof itself will be split into two sections: the first examines nowhere differentiability and the
second examines everywhere continuity. The topic of the Weierstrass function, and everywhere continuous,
nowhere differentiable functions in general, presents an extremely interesting counterexample to the converse
of one of the most important theorems in differential calculus.

2. Nowhere Differentiability

When we prove that the Weierstrass function is nowhere differentiable, we will examine the left and right-
hand difference quotients of the Weierstrass function and show a discrepancy in their signs. Specifically, we
will consider an arbitrary point x0 ∈ R and construct two points ym, zm ∈ R, which are to the left and right
of and converge to x0, using strict assumptions. We will derive a simple formula for each difference quotient
using our constructed points and show a discrepancy between them. Then, we will show that the derivative
cannot exist from either side because they approach infinity. Furthermore, they will have different signs,
which means that the derivative at any point will always oscillate.
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2.1. [3] The Weierstrass Function is Nowhere Differentiable.

Proof. We will prove the proposition by comparing the left and right-hand difference quotients, and achieving
a contradiction. We start by letting x0 be a fixed, arbitrary real number. We choose αm an integer where
m ∈ N is arbitrary such that bmx0 − αm ∈ (− 1

2 ,
1
2 ] and we define xm+1 = bmx0 − αm. If we put ym = αm−1

bm

and zm = αm+1
bm , then

ym − x0 = −1 + xm+1

bm
< 0 <

1− xm+1

bm
= zm − x0

and therefore ym < x0 < zm. It follows that

lim
m→∞

(ym − x0) = lim
m→∞

−1 + xm+1

bm

= 0,

implying that

lim
m→∞

ym = x0.

Note that this justification is the same for zm, so we see that as m→∞, ym → x0 from the left and zm → x0
from the right. We will first look at the left-hand difference quotient,

f(ym)− f(x0)

ym − x0
=

∑∞
n=0 a

n cos(bnπym)−
∑∞
n=0 a

n cos(bnπx0)

ym − x0

=

∞∑
n=0

an
cos(bnπym)− cos(bnπx0)

ym − x0

=

m−1∑
n=0

(ab)n
cos(bnπym)− cos(bnπx0)

bn(ym − x0)

+

∞∑
n=0

am+n cos(bm+nπym)− cos(bm+nπx0)

ym − x0
= S1 + S2,

where S1 and S2 are partial sums. We will consider each of these partial sums separately, by first considering
S1.Well, since

S1 =

m−1∑
n=0

(ab)n
cos(bnπym)− cos(bnπx0)

bn(ym − x0)

=

m−1∑
n=0

(−π)(ab)n sin

(
bnπ(ym + x0)

2

) sin
(
bnπ(ym−x0)

2

)
bnπ(ym−x0)

2

by the trigonometric identity cos(θ1)− cos(θ2) = −2 sin
(
θ1+θ2

2

)
sin
(
θ1−θ2

2

)
, and since∣∣∣∣∣∣

sin
(
bnπ(ym−x0)

2

)
bnπ(ym−x0)

2

∣∣∣∣∣∣ ≤ 1

because | sin xx | ≤ 1, we get

|S1| =

∣∣∣∣∣∣
m−1∑
n=0

(−π)(ab)n sin

(
bnπ(ym + x0)

2

) sin
(
bnπ(ym−x0)

2

)
bnπ(ym−x0)

2

∣∣∣∣∣∣
≤
m−1∑
n=0

π(ab)n =
π[(ab)m − 1]

ab− 1
≤ π(ab)m

ab− 1
.
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Hence, there exists an ε1 ∈ [−1, 1] such that

S1 = ε1
π(ab)m

ab− 1
.(2.1)

If we consider the second partial sum S2, and look at cos(bm+nπym), we get, because we chose b to be an
odd integer and αm ∈ Z

cos(bm+nπym) = cos(bm+nπ
αm − 1

bm
)

= cos(bnπ(αm − 1))

= [(−1)b
n

]αm−1

= −(−1)αm .

We now consider the second trignometric part of S2, cos(bm+nπx0), and we get

cos(bm+nπx0) = cos

(
bm+nπ

αm + xm+1

bm

)
= cos(bnπαm) cos(bnπxm+1)− sin(bnπαm) sin(bnπxm+1)

= [(−1)b
n

]αm cos(bnπxm+1)− 0

= (−1)αm cos(bnπxm+1).

This means we can express S2 as

S2 =

∞∑
n=0

am+n−(−1)αm − (−1)αm cos(bnπxm+1)

− 1+xm+1

bm

= (ab)m(−1)αm

∞∑
n=0

an
1 + cos(bnπxm+1)

1 + xm+1
.

By the assumption that a ∈ (0, 1), each term in the series

∞∑
n=0

an
1 + cos(bnπxm+1)

1 + xm+1

is non-negative and, because xm+1 ∈ (− 1
2 ,

1
2 ], we can find a lower bound of this series,

∞∑
n=0

an
1 + cos(bnπxm+1)

1 + xm+1
≥ 1 + cos(πxm+1)

1 + xm+1

≥ 1

1 + 1
2

=
2

3
.

Hence, there exists an η1 > 1 such that

S2 = (ab)m(−1)αmη1
2

3
.(2.2)

By considering (2.1) and (2.2), we see that

f(ym)− f(x0)

ym − x0
= (ab)m(−1)αmη1

2

3
+ ε1

π(ab)m

ab− 1
(2.3)

= (−1)αm(ab)mη1

(
2

3
+
ε1
η1
· π

ab− 1

)
,

where the sign of ε1
η1

depends on (−1)αm .
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If we now consider the right-hand difference quotient f(zm)−f(x0)
zm−x0

, the process is much the same. We
express the difference quotient as two partial sums, shown as

f(zm)− f(x0)

zm − x0
= S′1 + S′2.

Similar to what we showed in (2.1), we can show that there exists an ε2 ∈ [−1, 1] such that

S′1 = ε2
π(ab)m

ab− 1
.(2.4)

Considering the cosine terms in S′2, we arrive at, because b is odd and αm ∈ Z,

cos(bm+nπzm) = cos

(
bm+nπ

αm + 1

bm

)
= cos(bnπ(αm + 1))

= [(−1)b
n

]αm+1

= −(−1)αm .

This means that

S′2 =

∞∑
n=0

am+n−(−1)αm − (−1)αm cos(bnπxm+1)
1−xm+1

bm

= −(ab)m(−1)αm

∞∑
n=0

an
1 + cos(bnπxm+1)

1− xm+1
.

Thus, we can find a lower bound for the series

∞∑
n=0

an
1 + cos(bnπxm+1)

1− xm+1

by

∞∑
n=0

an
1 + cos(bnπxm+1)

1− xm+1
≥ 1 + cos(πxm+1)

1− xm+1

≥ 1

1−
(
− 1

2

)
=

2

3
.

Hence, as before, there exists an η2 > 1 such that

S′2 = −(−1)αm(ab)mη2
2

3
.(2.5)

Thus, by (2.4) and (2.5), we see that

f(zm)− f(x0)

zm − x0
= −(−1)αm(ab)mη2

2

3
+ ε2

π(ab)m

ab− 1
(2.6)

= −(−1)αm(ab)mη2

(
2

3
+
ε2
η2
· π

ab− 1

)
,

where the sign of ε2
η2

depends on −(−1)αm .

We assumed that ab > 1 + π 3
2 , or equivalently, π

ab−1 <
2
3 . Thus, no matter the value of ε1 or ε2, the left

(2.3) and right-hand (2.6) difference quotients have different signs and do not approach zero, which would
fix the derivative at zero. Also, since limm→∞(ab)m = ∞, we see that the Weierstrass function f has no
derivative at x0. Interestingly, the difference in sign makes the derivatives approach infinity and negative-
infinity, indicating that the derivatives will oscillate violently. Since x0 was an arbitrary real number, it
follows that f is nowhere differentiable on R. �
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3. Everywhere Continuity

Five terms with their definitions will be presented here. These terms are needed to prove that the
Weierstrass function is everywhere continuous. The upper bound of a subset A ⊆ R is a number β ∈ R such
that if for every a ∈ A, then a ≤ β. The least upper bound, or the supremum, of a subset of real numbers
A is a number α satisfying the following properties:

i: α is an upper bound of A.
ii: If γ < α, then γ is not an upper bound of A.

Let {fn} be a sequence of functions, and let n ∈ N. Then {fn} converges uniformly on an interval A ⊆ R to
a function f if for every ε > 0, there exists an integer N such that, if n ≥ N , then |fn(x)− f(x)| ≤ ε for all
x ∈ A [1]. Lastly, the Cauchy criterion states that a sequence of functions {fn} defined on I ⊆ R converges
uniformly on I if and only if for every ε > 0 there exists an integer N such that m ≥ N , n ≥ N , and x ∈ I
implies that |fn(x)− fm(x)| ≤ ε [1].

These two theorems and a corresponding corollary are used to prove the continuity of the Weierstrass
function. The proofs of these statements are included.

Theorem 3 ([1] Weierstrass M-Test). Suppose {fn} is a sequence of functions defined on an interval I ⊆ R,
where n ∈ N. If |fn(x)| ≤Mn, then

∑
fn converges uniformly on E if

∑
Mn converges.

Proof. By assumption,
∑
Mn converges. Then, because |fn(x)| ≤Mn, it follows that∣∣∣∣∣

m∑
i=n

fi(x)

∣∣∣∣∣ ≤
m∑
i=n

Mi ≤ ε,

where ε > 0 is arbitrary, x ∈ I, and m and n are large enough. It follows from the Cauchy criterion for
uniform convergence that

∑
fn(x) is uniformly convergent. �

Theorem 4 ([1]). Suppose {fn} is a sequence of continuous functions on an interval I ⊆ R, where n ∈ N.
If fn converges uniformly to some function f , then f is continuous on I.

Proof. Let x, y ∈ I. Since {fn} converges uniformly to f , for all ε > 0 there exists an n ∈ Z such that
|f(x)− fn(x)| < ε

3 for all x ∈ I. Since every fn is continuous, it follows that there exists a δ > 0 such that
if |x− y| < δ, then |fn(x)− fn(y)| < ε

3 . Then,

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)| < ε,

showing that if |x− y| < δ, then |f(x)− f(y)| < ε, making f continuous. �

Corollary 1 ([3]). Suppose {gk} is a sequence of continuous functions on an interval I ⊆ R, where k ∈ N.
If
∑∞
k=1 gk converges uniformly to a function f on I, then f is continuous on I.

Proof. Let fn =
∑n
k=1 gk be the nth partial sum of functions from {gk}. Note that each partial sum fn is a

continuous function because it is a finite sum of continuous functions. Saying
∑
gk converges uniformly to

f is equivalent to saying that

lim
n→∞

fn = f.

Then, because {fn} converges uniformly to a function f , it follows that f is continuous by the Weierstrass
M-Test. �

3.1. [3] The Weierstrass Function is Everywhere Continuous.

Proof. Consider the fact that, because a ∈ (0, 1), the geometric series
∑∞
n=0 a

n = 1
1−a < ∞. Because

supx∈R | cos(bnπx)| ≤ 1, we have that supx∈R |an cos(bnπx)| ≤ an. Thus, by the Weierstrass M-Test, the
Weierstrass function is uniformly convergent for all real numbers. Also, by Corollary 1, the Weierstrass
function is continuous everywhere on R. �
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4. Conclusions

The Weierstrass function presents an interesting counterexample to the converse of one of the most basic
properties of differential calculus, i.e. that it is everywhere continuous but nowhere differentiable. We
showed, through derivation, that the Weierstrass function cannot be differentiated at any point on the real
line. Also, using a few theorems and definitions from higher analysis, we showed that it is everywhere
continuous on the real line.
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